

Zero-carbon Industrial heat production by aMmonia water aBsorption heAt transformer

PROJECT AMBITION

The ZIMBA project aims to revolutionise industrial heating systems with an innovative heat pump based on an Absorption Heat Transformer (AHT) using ammonia/water refrigerant. Designed to operate efficiently at a 15 kWth scale, this innovative technology aims to provide industrial heat production, starting at **110°C** and later scaling up to 130°C. The heat pump system will be further optimised with an ejector, allowing for a wider range of operational capacities. This adaptability ensures the technology can meet the diverse heat requirements of various industrial processes, making it a key solution for reducing industrial carbon footprints and contributing to a sustainable energy transition.

Illustration of potential integration of the ZIMBA AHT system into the energy system with a circularity approach

PROJECT FACTS

Start date: 01/12/2024

End date: 30/11/2028

Duration: 48 months

Project budget: €1.9 M

HORIZON Europe Research and Innovation Action (RIA)

Grant agreement: 101146932

Call: HORIZON-CL5-2023-D3-02

Topic: HORIZON-CL5-2023-D3-02-04

Keywords: Renewable energy sources, Decarbonising industry, Water-Ammonia Absorption Heat Transformer, Heat pump, Ejector, Industrial heat, Circularity, Sustainability.

OST

KEY OBJECTIVES

• First upscale of the baseline AHT system

Developing an advanced, scalable, energy-efficient AHT system that operates on waste heat with minimal electricity, ensuring high reliability and performance.

• Design of performance-enhancing ejector

Developing a specialised ejector to enhance the AHT system's performance and stability under high condensation temperatures with a two-phase ammonia-water mixture.

• Ejector integration and performance validation

Sizing, designing, and testing the enhanced ammonia/water AHT system, optimised with a custom ejector to generate heat and steam at 110°C from a 70-80°C heat source.

• Preparatory studies for market penetration

Identifying optimal technological solutions, business models, and key industrial markets for commercial deployment of the AHT system.

• Investigations for higher heat sink temperature

Identifying AHT technological solutions and optimal sizing to achieve higher heat sink temperatures, targeting key industrial markets for 130°C heat output.

EXPECTED IMPACT

• Improved performance of heat pumps and/or heat pump components

ZIMBA's **AHT solution** efficiently converts waste heat into usable heat with minimal electricity, **using less material and space** than conventional systems. With **low costs and reliance on free waste heat**, it offers a sustainable solution for industrial applications.

Reduced environmental footprint

The ZIMBA AHT system **uses significantly fewer critical materials**, requiring only limited copper for the liquid pump motor, with other components made from stainless steel, thereby boosting European resilience in this area.

• Reduced greenhouse gas emissions

ZIMBA significantly contributes to the EU's climate neutrality targets, in line with the Green Deal and the Paris Agreement. Using **ammonia with no impact on ozone depletion** or **global warming**, ZIMBA reduces emissions compared to traditional systems.

• Enhanced energy system integration

ZIMBA is a breakthrough in energy system integration, efficiently **harnessing ultra-low-grade waste heat**, often considered unrecoverable, and **using minimal electricity** to convert it into useful steam, thereby addressing inefficiencies in industrial processes.

CONSORTIUM

CEA (FR)
Politecnico di Milano (IT)

Clauger (FR)
AMIRES SRO (CZ)
OST – Ostschweizer
Fachhochschule (CH)

CONTACTS

Dr. Hai Trieu Phan, CEA Project Coordinator Haitrieu.PHAN@cea.fr

Cristina Dinca, AMIRES

Project & Dissemination Manager dinca@amires.eu

> Website: www.zimba-project.eu

LinkedIn:

Funded by the European Union

OST

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101146932.

